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In the solvable hard hexagon model there is at most one particle in every pair of 
adjacent sites, and the solution automatically leads to various mathematical 
identities, in particular to the Rogers-Ramanujan relations. These relations have 
been generalized by Gordon. Here we construct a solvable model with at most 
two particles per pair of adjacent sites, and find the solution involves the next of 
Gordon's relations. We conjecture the corresponding solution for a model with 
at most n particles per pair of adjacent sites: this involves all Gordon's relations, 
as well as others that we will discuss in a subsequent paper. 

KEY WORDS:  Statictical mechanics; lattice gas; star-triangle relation; 
Yang-Baxter relation. 

1. I N T R O D U C T I O N  

The hard hexagon model was solved (*) in 1979 by generalizing it to a 
model which satisfied the "star-triangle" (or "Yang-Baxter") relations. Its 
local density and order parameters could then be calculated by the corner 
transfer method. (2"3) An intriguing aspect of the solution was that these 
properties were obtained as series of the type that occurs in the theory of 
partitions, (4) and could be simplified to elliptic 0-function-type products by 
using the Rogers-Ramanujan and related identities. This simplification 
made it easy (by using the conjugate modulus identities of the elliptic 
functions) to obtain the behavior at the critical point. 
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The Rogers-Ramanujan relations have been generalized by 
Gordon, ~4'5) in which form they can be written as 

q,2+2~3+ 3~,+ ... = 1-] (1.1) 
~2,o3,... j = 1 

j #  0, + i ( m o d  2n + 1) 

Here i, n, a l ,  a2, 0-3 .... are nonnegative integers, subject to the constraints 

l <~i<<.n a l = n - i  (1.2) 

O<~aj<~n-1 O~ffj+ffj+l<~n--1 Vj>~I (1.3) 

q is any complex number such that [q[ < 1; the sum in (1.1) is over all 
values of (r2, 0"3 .... satisfying (1.3). 

For n = 2 we regain the original Rogers-Ramanujan identities. In this 
case the left-hand side (LHS) of (1.1) occurs in the hard hexagon model 
calculations, ol ,  0-2,... being the occupation numbers of a line of sites on the 
lattice. The constraint (1.3) corresponds to the requirement that adjacent 
sites cannot both contain a particle. 

This leads one to speculate that there may be a solvable generalization 
of the hard hexagon model that yields the LHS of (1.1) for arbitrary n. One 
would now place particles on the sites of the square lattice, subject to the 
rule that there be no more than n -  1 particles on each pair of adjacent 
sites. (This implies that each site contains no more than n -  1 particles.) It 
would be an "interactions-round-a-face" (IRF) model, with interactions 
between the fair sites round each face. 

A number of solutions of the star-triangle relations have been found in 
recent years, (6-m) but none are of this type. In particular, the eight-vertex 
SOS model ~7) did yield generalizations of the Rogers-Ramanujan identities, 
indeed it even gave expressions that were identical with the RHS of (1.1). 
We thought we were close to our goal, and would soon discover a mapping 
from the 8V SOS model to the required particle model. 

In fact we have not succeeded in doing this. Instead we here obtain 
directly the solvable particle model for the case n =  3. Like the hard 
hexagon model and the 8V SOS model, it has four regimes, depending on 
the values of its parameters. In one of them (Regime I) the local densities 
are proportional to the LHS of (1.1) as we hoped. In the other regimes we 
obtain similar, but more complicated, expressions. 

We have not constructed the particle model for n > 3; but, from the 
now-known n = 2 and 3 cases, we have conjectured the local density 
expressions for arbitrary n. In a subsequent we show, for all regimes and 
for arbitrary n, that there exist identities analogous to (1.1) that enable us 
to write the results in terms of elliptic 0-function-type products. 
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2. S T A R - T R I A N G L E  R E L A T I O N  

Consider a square lattice 5 ~ of N sites. Place particles on the sites and 
let ~i( =0,  1, 2,...) be the number of particles at site i. Let i, j, k, I be the four 
sites round a face (arranged as in Fig. 1) and define a Boltzmann weight 
function w(~r;, ~j ~k, ~l) for each face. Then the partition function is 

z--Z I-[ w( i, (2.1) 
(ijkl) 

where the product is over all faces (ijkl) of ~ and the sum is over all 
allowed values of a - { a l , . . . ,  aN}. For  a given function w, we want in 
statistical mechanics to calculate the partition function per site 

z =  lim Z 1IN (2.2) 
N ~ Q O  

where the limit is that in which Y becomes large in all directions. We are 
also interested in the probability that a particle site, say site 1, contains r 
particles, which 

P r =  Z - l  ~ g)(crl, r) I~ w(crl, aj, (r k, a,) 
~r ( ijk/) 

(2.3) 

it being understood that ~o is again large, site 1 being deep in its interior. 

TI k 

"i 

Fig. 1. A typical face of the square lattice, with surrounding sites i, j, k, 1. 
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The quantities z and Pr can be evaluated (3) if, given w, one can find a 
t W tt family of nontrivial solutions for w,  of the star-triangle or Yang-Baxter 

relation 

w(a, b, g , f )  w'(e, f g, d) w"(c, d, g, b) 
g 

WI,': = 2., ~g, e, f ,  a) w'(g, a, b, c) w(g, c, d, e) (2.4) 
g 

for all values of a, b,..., f. (An example of a trivial solution is w'(a, b, e, d) = 
2w(b, c, d, a), w"(a, b, c, d)= 6(a, c).) 

One obtains Pr by the corner transfer matrix method (2'3"7), which gives 

= 2 c](~ r) M(O'l,..., am)/ ~'~ M(al,..., am) Pr (2.5) 
~71,...,ffm gr 1, . . . ,~ m l 

Here the M(a l ,  o2,..., Ore) (for all values of ol ..... o,,) are the eigenvalues of 
the product of the four-corner transfer matrices. We can identify ol,-.., a,, 
with the spins on a horizontal line of sites of the lattice L~, starting at the 
centre (site 1) and going out to the boundary (site m). The large-lattice 
limit implies that we ultimately let m become infinite. If we define 

F ( a l ) =  ~', M(a l ,  a2,..., am) (2.6) 
ff2, . . . ,~m 

then (2.5) implies 
/ 

P r = F ( r ) /  ~ F(Ol) (2.7) 
/ a l ~ O  

so F(r) can be regarded as an unnormalized probability. 
The star-triangle relation (2.4) has solutions only for certain special 

functions w (corresponding to "solvable" models). Here we are interested in 
obtaining solutions when the constraints corresponding to (1.3) are 
satisfied, i.e. 

O ~ o j ~ n - 1  O ~ a ~ + o j ~ n - 1  (2.8) 

for all edges ( • )  of ~ .  This means that we can take, for a, b, c, d non- 
negative integers 

w ( a , b , c , d ) = O  unless a + b , b + c , c + d . d + a < n  (2.9) 

We impose the diagonal-reflection symmetry conditions 

w(a, b, c, cl) = w(c, b, a, d) = w(a, d, c, b) (2.10) 

Since al,..., am in (2.5) and (2.6) correspond to a linear array of sites, 
they must satisfy the constraints (1.3). 
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3. T H E  CASE n = 2  ( H A R D  H E X A G O N S )  

For n = 2  the function w(a,b ,c ,d)  is known, being that of the 
generalized hard hexagon model. For completeness we give the results here. 

First let O~(u, p), or 01(u), be the elliptic P-function 

01(u,p)=2pl/8sinu f i  ( 1 - 2 p J c o s 2 u + p 2 Q ( 1 - p  j) (3.1) 
j = l  

where p is real and Ipl < 1, and let 

Then, apart from 

w(0, 0, 

w(1, 0, 

w(0, 1, 

w(1, 0, 

w(0, 1, 

2 = re/5 (3.2) 

an overall normalization factor, w(a, b, c, d) is given by 

O, O) = O~(2,Z + u)/O~(Z,t) 

O, o)= w(O, o, l, o)=x-lOl(u)/fo~(;o) 01(2,~)] 1/2 

o, o) = w(O, o, o, 1) = xO,(2 - u)/O,(2) (3.3) 

1, o) = x-20~(22 - u)/Ol(ZJ. ) 

O, 1) = x~Ol(,~ + u)/O~(,~ ) 

(eq. 14.2.39 of Ref. 3). 
This function satisfies the symmetry relations (2.10), i.e. 

w(a, b, c, d) = w(c, b, a, d) = w(a, d, c, b) (3.4) 

It depends on the parameters u, x and p. We regard p as a given constant, u 
and x as variables, and write w as w(a, b, e, d[ u, x), or simply w[u, x]. 
Then it has the rotation and inversion symmetries 

w(a, b, c, d[ u, x ) =  w(b, c, d, a[ 2 - u ,  Xo/X) (3.5) 

w(a, b, g, dlu, x) w(g, b, c, dl - u ,  x - l )  = f(a, c) 01(2 + u) 01(2-u)/0~(2) 
g 

(3.6) 

where 
Xo = [01(2)/0l(22)] 1/2 (3.7) 

The function w simplifies when u = 0  or 2, these being inversion 
poin ts /m It then has the values 

w(a, b, c, d[0, x ) = x  b+a . . . .  f(a, c) (3.8) 

w(a, b, c, d[2, x ) =  (Xo/X) a+c-b aft(b, d) (3.9) 
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If we define z (a complex number) by 

p = e 2~i (3.10) 

then the function O~(u) has the quasi-periodicity properties 

01(U ) = - - O I ( U  "t- 7"f.) "~- --pl/2e2iUOl(U + "clr,) (3.11 ) 

It follows that 

w [ u , x ] =  - w [ u +  r~ ,x]= pl/2ei(2"-'~)w[u+ zrc, - x e  -~'~] (3.12) 

The x dependence is rather trivial 

w(a, b, c, dlu,  x ) =  x b+a . . . .  w(a, b, c, dlu,  1) (3.13) 

Using these properties (3, 4)-(3.13), we can show that the star-triangle 
relation (2.4) is satisfied by 

w = w[u,  x]  w ' =  w[u' ,  x ' ]  w" = w[u",  x"]  (3.14) 

provided only that the six variables u, u', u", x, x', x" satisfy the relations 

u + u '  + u " = 2  x x ' x " = X o  (3.15) 

To prove this, consider the difference of the LHS and RHS of (2.4) for 
given values of a,..., f From (3.13) it is easily found that 

L H S _  RHS = x - a - a x ,  b - - e  X . . . .  f ~ (3.16) 

where ~ depends on x, x', x" only via their product xx 'x" .  It also depends 
on u, u', u". If we regard ~. and u' as fixed, u" and x x ' x "  as given by (3.15), 
i.e., u " =  2 -  u ' - u ,  then Z is a function only of u 

2 =  ~(u) (3.17) 

Incrementing u by zrc causes u" to be decreased by rn. From (3.12) 
and (3.14), the effect on w and w" is to multiply them by certain factors 
and to replace x, x" by - x e  i~, - x " e  -t~, respectively. This leaves x x ' x "  
unchanged, so (3.15) remains satisfied and we obtain 

~(u  + "crc) = p - Xe2~u"- U)e~ - ~)lc + f -  a -- a)~,(U ) (3.18a) 

It is also easily seen that 

~(u + re) = ~,(u) (3.18b) 
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and that Z(u) is an entire function of u. It follows that there exist constants 
C, ul, u2 (independent of u but dependent on a,..., f )  such that 

Z(u) = C01(u - Ul) 01(u - u2) (3.19) 

where, to modulo 7r 

u 1 + u 2 = 2 - u ' +  �89 - ~)(c + f -  a -  d) (3.20) 

Since 01(0) = 0, ul and u2 are zeros of 2(u). 
Now consider the case when u = 2 - u ' ,  and so u"= O. Then from (3.5) 

and (3.11) 
w'(a, b, c, d)= (Xo/Xx')a+c--b-dw(b, C, d, a) (3.21) 

while from (3.8) 
w"(a, b, c, d ) = x  "b+a-a c g)(a, c) (3.22) 

Substituting these expressions into (2.4), we readily find, using (3.15), that 
it is satisfied. (In fact we have a variant of the trivial solution mentioned 
immediately after (2.4).) Thus 

~ ( 2 - u ' ) = 0  (3.23) 

Next take u = -u ' ,  i.e., u" = 2. Since Z in (3.16) involves x, x', x" only 
via xx 'x ' ,  we can, without loss of generality, take x " =  Xo and x ' =  x 1. 
Then from (3.9) we have w"(a, b, c, d) = 3(b, d). Using (3.4), we can write 
(2.4) as 

6 ( b , d ) ~ w ( a , b ,  g, f l u ,  x) w ( g , b , e , f ] - u , x  1) 
g 

= 6 ( a , e ) ~ w ( b , c , g ,  a l - u , x - l ) w ( g , c , d , a ] u , x )  (3.24) 
g 

The g sums can at once be evaluated from the inversion relation (3.6). Both 
sides become 6(b, d) 3(a, e), and so (2.4) is satisfied in this case and 

~(-u ' )=o  (3.25) 

Cyclically permuting u, u', u" (and x, x', x ' )  is equivalent to permuting 
a, c, e and b, d, f i n  (2.4). Thus Z(u) vanishes if any of u, u', u" equal 0 or 2. 
In particular 

~(2 - u') = ~ ( -  u') = ~(0) = ~(2) = 0 (3.26) 

Thus 2(u) has four zeros, in general, distinct to moduli ~ and rrc, while 
from (3.19) it either has only two, or the constant C vanishes. It follows 
that C must vanish, so E(u) is identically zero and hence (2.4) is satisfied. 
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(This argument is a generalization of the theorem that if a polynomial 
of degree n has more than n distinct zeros, then it vanishes identically.) 

4. THE CASE n = 3 ;  S O L U T I O N  OF THE S T A R - T R I A N G L E  
RELATION 

We can of course attempt to solve the star-triangle relation directly, 
and for n = 2 this is how the hard hexagon model was solved. (1'3) From 
(2.9) and (2.10), each function w, w', w" has five independent values and 
(2.4) yields seven distinct constraints. Thus one has seven equations for 15 
unknowns, and one can attempt to parametrize the solution. 

For n = 3  the situation is much worse: each of w,w', w" has 15 
independent values, and (2.4) yields 59 distinct constraints, so one has 59 
equations for 45 unknowns. 

Jimbo and Miwa ~8) have obtained other solutions of the star-triangle 
relations by using the differential formulation. (12/We were unable to make 
progress by this method, but finally managed to obtain w, w', w" by first 
using the simpler of the 59 constraints (see Appendic A). For brevity, it is 
convenient to often abbreviate the 0-function 0j(u), defined by (3.1), simply 
to (u). With this convention, the result for w(a, b, c, d) is 

w ( l l 0 0 )  

w(1000)  

w(2000)  

w(0111) 

w(1020) 

w(Ol00)  

w(0200) 

w(lllO) 

= + X o  ~ y o ( u ) ( , ~ -  u)/(,~)(32) 

= XoX ~(u)(32 + u)/(,~)(3,~) 

= y o y  - 1 ( u ) ( 3 2  - u ) / ( 2 ) ( 2 2 )  

= x o lx (u ) (2~  q- u)/()~)(3,r 

= Xo y O X  - l y  - I(U)(/~ -t- U)/(2)(22) 

= x ( ~ -  u)(3,~ + u)/(,~)(3,~) 

= y(2  - u)(2)~ + u ) / (2 ) (22)  

= x - ~ ( 2  - u) (32 - u ) / (2 ) (32)  

w(0201) = x y (  ;~ - u )( 2,~ - u )/  ( ,~ )( 2~  ) 

w(1010)  = x - 2 ( 3 2  + u)(3,~ - u ) / (32)  2 

w(0101) = x2(32 + u)(22 + u)/(22)(32) 

w(2020) = y-2(22 - u)(32 - u)/(22)(32) 

w(0202) = y2()~ + u)(22 + u)/(2)(22) 

w(1111) = (22 + u)(32 - u)/(22)(3,~) 

w ( O 0 0 0 )  = W( 1111 ) - -  (22)(U)()~  - -  U)/ ( )~)(3X) 2 

(4.1) 
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where u, x, y, p are arbitrary variables, Xo and Yo are given by 

Xo = [(22)/(32)] ~/2 Yo = [(2)/(32)] ~/2 (4.2) 

and now instead of (3.2) we have 

2 = ~/7 (4.3) 

Together with (2.10), these equations define the weight function 
w( a, b, c, d). 

Analogously to Section 3, we regard p as constant, u, x, and y as 
variables, and write w as w(a, b, c, d[ u, x, y) or simply w[u, x, y].  Then 
(2.4) is satisfied by 

w = w[u, x, y ]  w '=  w[u', x', y ']  w " =  w[u", x", y"]  (4.4) 

provided that 

v ' " ( 4 . 5 )  u + u' + u" = 2 xx 'x"  = x o . Y Y = Yo 

One way of verifying this assertion would be to check each of the 59 
equations (2.4). This would be extremely tedious: instead we start by 
generalizing the method of Section 3. 

Define ~ba by 

~b 0 = 1 ~b 1 = x ql 2 = y (4.6) 

then the analogues of the properties (3.5)-(3.13) are 

w(a, b, c, dl u, x, y)  = w(b, c, d, al 2 - u, Xo/X, To~Y) 

•  w(a,b, g , d [ u , x ,  y)  
g 

• w(g, b, c, dr - u ,  x -1, y - l )  (4.7) 

= 6(a, c)(2 + u ) ( 2 -  u)(22 + u)(22 - u)/[-(2)2(22) 2] 

(4.8) 

w(a, b, c, dl O, x, y )  = qkbq)a6(a, c)/[~ba~bc] (4.9) 

w(a, b, c, dl 2, Xo/X , Yo/Y) = q~ aOc 6(b, d)/[~bb~ba] (4.10) 

w[u, x, y ]  = w[u + ~c, x, y ]  (4.11a) 

= p e ~ 2 " - ~ ) w [ u +  rlr. - xe -~ ; ;  - y e  -3i~'] (4.11b) 

w(a, b, c, dlu, x, Y)=q)b~dw(a, b, c, d[u, 1, 1)/[q~a~bc] (4.12) 
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These properties follow straightforwardly from (4.1); the most tedious to 
establish is the inversion relation (4.8), where one makes repeated use of 
the identities 

(u) = ( 7 2 -  u) = - ( - u )  (4.13) 

( r + u ) ( r - u )  ( r + s ) ( r - s ) ( u )  2 ( s + u ) ( s - u )  
(r)2 (r)2(s)2 = (s)2 (4.14) 

true for all complex numbers u, r, s (c.f. eq. 15.3.10 of Ref. 3). A particular 
case that occurs frequently is when u, r, s = 2, 32, 22 

(22) (2) ~ (2)(32) 
(32) (22)(32) 2 (2)~) 2 (4.15) 

Now consider the difference of the LHS and RHS of (2.4) for given 
values of a,.. . , f  Let ~b',[~b2] be obtained from definition (4.6) of ~a by 
replacing x ,y  by x'y'[x", y"]. Then from (4.12) 

LHS - RHS = ~/[OafbaO'b~'O"fbf] (4.16) 

where 2 depends on x, x', x", y, y', y" only via the function product 
q~aq~'a~ba, i.e., only via xx'x" and yy'y' .  As in Section 3, we regard 2 and u' 
as fixed, u", xx'x" and yy'y" as given by (4.5). Then ~ is a function only of 
u, as in (3.17). From (4.11), it satisfies the quasi-periodicity relations 

~(u + ~z) = p-2e4i(""-~)e ~ -  ~)(~+ v-~,-~a)Z(u) (4.17a) 

Z(u + 7t) = ~(u) (4.17b) 

where 

v , = a ( a +  1)/2 (4.18) 

Since Z(u) is entire, it follows that there exist constants C, u~, u2, u3, u4 
such that 

Z(u) = COl(u-  ul) Ot(u - u2) Ol(u - u3) 01(u-  u4) (4.19) 

~/1 -j- U2 -~ U3 "~- /'/4 = 2(2 - u') + 5(2 -- 7c)(v c + v r -  va - vd) (4.20) 

Now look at special values of u. When u = 2 - u '  we have u " =  0. 
Using (4.9) and (4.7) we easily find that (2.4) is satisfied, so ~ ( 2 - u ' ) =  0. 
Next we take u = - u ' ,  i.e., u" = 2, x" = Xo, y" = Y0, x' = x -1, and y'  = y-1.  
Then from (4.10) we have w"(a, b, c, d) = 6(b, d), so (2.4) takes a form very 
similar to (3.24), but with the single argument x replaced by x, y [and x - t  
by x - t ,  y - l ] .  From the inversion relation (4.8) it follows that (2.4) is 
satisfied, and hence ~ ( -  u ' ) =  0. 
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Thus again we have (3.23) and (3.25) and therefore (3.26). There are 
two ways of reconciling (3.26) with (4.19): either C = 0 or 

II  1 , . . . ,  U 4 = ,~ - -  U ' ,  - -  U ' ,  0 ,  J~ 

In the latter case, it follows from (4.20) that 

vc + vj = va + va (4.22) 

Thus if a, . . . , f  do not satisfy (4.22), then C must be zero and we have 
proved that (2.4) is satisfied for all complex numbers u. 

We can of course apply these arguments as well to u' and u" as to the 
variable u. Since cyclically permuting u, u', u" is equivalent to permuting 
a, c, e and b, d, f i n  (2.4), it follows that we have verified (2.4), except only 
for the cases when 

v a + v d = v ~ , + v ~ = v ~ + v f  (4.23) 

In (2.4) the spins a, b are nonnegative integers satisfying the constraint 
a+b<~2.  Similarly for the pairs (b, c), (c, d), (d, e), (e, f ) ,  and ( f  a). 
Interchanging a with d, b with e, and c with f merely interchanges the 
left and right sides of the equation. It follows that there are only five 
distinct equations for which (4.23) is satisfied, namely those with (a,..., f )  
equal to (0 ,1 ,0 ,1 ,0 ,1) ,  (0 ,2 ,0 ,2 ,0 ,2) ,  (1 ,1 ,0 ,0 ,0 ,1) ,  (1 ,1 ,1 ,0 ,0 ,0) ,  
(0, 1, I, 1, 0, 0). The fourth and fifth can be obtained from the third by 
cyclic permutations of u, u', u", so it is sufficient to consider the first three 
equations. 

It is easily verified that these first three equations are satisfied for 
u = -32,  - 2 ,  -22 ,  respectively. (In each case we just have to prove that a 
product of 0-functions is the same as another product.) Thus for these 
values of a ..... f ,  ~(u) has one other zero, in addition to those given by 
(3.26). It therefore has more than four zeros (distinct to moduli n, vn), so 
the constant C in (4.19) must vanish. Hence 2(u) vanishes identically for 
all values of a ..... f,  i.e., the star-triangle relations (2.4) are satisfied. 

5. C O R N E R  T R A N S F E R  M A T R I C E S :  n = 3  

Let A, B, C, D be the four corner transfer matrices (2'3'7'13), correspon- 
ding, respectively, to the lower-right, upper-right, upper-left, and lower-left 
quadrants, as in Fig. 13.2 of Ref. 3. They have elements A~,,..., D,~,, where 

= {al ..... ~,,} is a line of spins radiating out from the center of the lattice, 
ol being the central spin am, a boundary spin. The elements are zero unless 
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a l=a '~ ,  which means that A,..., D are all block-diagonal matrices, com- 
muting with the diagonal matrix R that has elements 

R . . , = r ~  f i  6(aj, a}) (5.1) 
j=t 

for arbitrary choices of ra. 
Consider the n = 3 case discussed in Section 4. Let u (and x and y) be 

different in each quadrant, having the values ul,..., u4 (x~ ..... x4 and 
Y~ ..... Y4) in the four quadrants, respectively. Then we can write A as 
A(ul, xl, y~), B as B(u2, x2, Y2), etc. Because the star-triangle relation 
(2.4) is satisfied by (4.4) and (4.5), A, B, C, D satisfy various product and 
commutation relations. We have to distinguish two domains in the com- 
plex u plane 

~1:0  < Re(u) < 2 
(5.2) 

@2:2 - �89 < Re(u) < 0 

Provided Ul,..., u4 all lie in the same domain, we can establish that (to 
within an overall irrelevant scalar normalization factor) 

A(ul, xl, Yl) B(u2, x2, Y2) C(u3, x3, Y3) D(u4, x4, Y4) 

= PRMexp[(ul  - u 2 + 12 3 - -  U4) o f ]  P-~  (5.3) 

Here P, M, o f  are matrices that are independent of//1 . . . . .  b/4, Xx,..., X4, and 
Ya,..., Y4 (but depend on the choice of domain); R, M, o f  are diagonal, R 
being given by (5.1) with 

ro=  1 rl =XlX3/X2X 4 r2= YlY3/Y2Y4 (5.4) 

For  the regular case, when ui, xi, yi are independent of i, the RHS of 
(5.3) reduces to PMP 1. Thus M is the diagonal matrix of eigenvalues of 
ABCD, its elements being the M(al  ..... am) needed in (2.5). Our aim here is 
to calculate M (but not P). We need only calculate M to within a scalar 
factor, because such factors cancel out of (2.5). 

We start by relating M to of.  First let Ul, u 3 ~ 0 ,  x~, x3, Yl, Y3 = 1. 
Then from (4.9), w(a, b, c, d ) = 6 ( a ,  c) in the first and third quadrants, 
which implies that A = C = I (the identity matrix). 

Now use the rotation relation (4.7) in the inversion relation (4.8), The 
result is an inversion relation between w[2-U,  Xo/x, yo/y] and 
w[2 + u, XoX, Yo Y]. In domain ~ this can be applied directly to B(u, x, y) 
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and D(u, x, y )  (one has to analytically continue across the Re(u) = 2 boun- 
dary, but this is usual for inversion relations), yielding 

9(2 - u, Xo/X, Yo/Y) D(2 + u, Xo x, YoY)  -= I (5.5) 

(to within a scalar factor). 
In domain 92 we use the periodicity relation (4.11a) to replace the 

argument 2 + u by 2 -  n + u (one then has to analytically continue across 
the Re(u) = 2 - �89 boundary). Taking u 2 = • - -  I/, L/4 ~--" 2 ~- b/ (or 2 -- n + u), 
x2 = x4 = Xo, Y2 = Y4 = Y0, the identity (5.3) becomes 

I =  P R o 2 M e - ~ ; ~ P  ~ (5.6) 

where R 0 is defined by (5.1) with 

r o = l  r l = x  o r 2 = y o  (5.7) 
and 

t = 2 in ~ 

= 2 -  (~/;0) in~2 (5.8) 

(Thus for the n = 3 case we are considering, 2 = n/7 and t =  - 5  in 92.) 
From (5.6) it follows that 

M =  R~e ' ~  (5.9) 

(This result is analagous to eq. (a24) of Ref. 7.) 
Now we use the quasi-periodicity relations (4.11), but taking care to 

remain within ~t  (or 92). If the nome p of the elliptic function (occurring 
in (3.l)) is positive, then from (3.10) we can take T to be pure imaginary. If 
p is negative, we take r -  �89 to be pure imaginary. Either way, one can 
express r and p in terms of a real positive number s 

p > O : z = i s  p = e  -2~s 
(5.10) 

p < O : T = � 8 9  p =  - e  - 2 ~  

In both cases, it follows from (4.11) that w [ u , x ,  y ]  is proportional to 
w[u  + 2iz~s, xe  -2i~, ye  6i~], so (to within a scalar factor) 

A ( u, x, y)  = A ( u + 2izcs, x e  - 2i;t,  y e  - 6i;~ ) (5.1l) 

and similarly for B, C, D. 
Using these periodicity relations in (5.3), we find that the diagonal 

elements of W must be of the form 

~ ....... = s -  ' [ l ~  ....... + ~ (~ + 1 ) / 2 ~ ]  (5.12) 
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where l~, ....... takes only integer values. Assuming these values do not 
change discontinuously with s, we can obtain them from special limiting 
cases. 

Take x l = x 3 = y l = y 3 = l ,  x 2 = x 4 = x o ,  y 2 = y 4 = Y o ,  u l = u  , u3=0  , 
u 2 + u4 = t).. Then from the above arguments B C D  = L so (5.3) yields 

A(u, 1, 1)= Pe""e P - a (5.13) 

Let s--+0. From the conjugate modulus identities for the elliptic 0 
function (eq. 14.2.42 of Ref. 3) 

01(u) ~ 2s 1/2 exp 4s 

il/4(2/s)1/2 exp ( 

provided -re/2 < Re(u) < re/2. 

sinh(u/s) if p > 0 

(5.14) 

16s ~ss sinh(u/2s) if p < O  

Now consider the limit when u, s--, 0, the ratio u/s remaining finite. 
Define (for a, b, d integers) 

h ( d , b ) = [ b - d l / 2  if b + dis even 

= ( b + d + l ) / 2  if b + dis odd (5.15) 

p > 0 : p --= e 2u(a - u)#ts 

g(a) = a(a + 1)/14 (5.16a) 

H(d, a, b ) :  - h ( d ,  b) 

p < 0 : p = e -  u(2u + 52)#ts 

g(a) = a(a + 1)/14 (5.16b) 

H(d, a, b) = a 

Then by using (5.14) in (4.1) (with x = y = 1), we find that p - l w ( a ,  b, c, d) 
tends to a limit. This limit is zero if a ~ c, nonzero if a = c, and is given by 

p - l w ( a ,  b, c, d) = 6(a, c) exp{  (u / s ) [g(b)  + g(d) - g(a) - g(c)  + H(d, a, b)] } 

(5.17) 
The factor 6(a, e) ensures that the lower-right corner transfer matrix A 

is diagonal. From its definition, (2,3,J3) using (5.17), one readily finds that (to 
within a scalar normalization factor) 

j ~ l  
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Here am+~ and am+2 are fixed boundary spins. For an ordered state, they 
should be set at the appropriate ground-state values. 

Thus in the small u, s limit, A is diagonal, so from (5.13) we can take 
P = I and the diagonal elements of ~ to be 

~((~, ....... =S-I Ig(o-1)+ ~ jH(aj, aj+l, aj+2)] (5.19) 
j = l  

Since H(a,b, c) and ga-a(a+l)/14 are integer functions, this result is 
indeed of the form (5.12). Assuming that the integer function l~, ....... in 
(5.12) does not change discontinuously with s (within a given u domain 
and for a given sign of p), it follows that (5.19) must be true for all real 
positive s. 

From (5.9), the elements M(a~,..., a,,) of the diagonal matrix M (the 
diagonal form of ABCD) are therefore given by 

M(al,...,am)=r~lexp{t~2slg(aa)+ ~ jH(aj,~rj+l,aj+2)]} (5.20) 
j = l  

where r~ is given by (5.7) and (4.2) and t by (5.8). This is the M(al,..., am) 
needed in (2.5) and (2.6). 

I n v e r s i o n  R e l a t i o n s  f o r  z 

The partition function per site z defined by (2.2), can be calculated 
quite simply by the inversion relation technique. (11'14) Regard the nome p 
as given; then, from (4.1), the Boltzmann weights w are functions of u, x, y. 
So, therefore, is z, except that from (4.12) and (2.1) the x and y factors can- 
cel out of the partition function, so z is a function only of u. The inversion 
relation (4.8) implies that 

z(u)z(-u)=(2+u)(2-u)(2)~+u)(22-u)/[(2)2(22) 2] (5.21) 

where Ol(u ) has again been abbreviated to (u), u is to be regarded as con- 
fined to one or other of the domains (5.2), z(u) being the partition function 
per site in this domain, and z ( - u )  as its analytic continuation through 

We need a second relation in order to determine z(u). For the domain 
~1, we can simply use the rotation symmetry (4.7), which implies that 

z(u) = z(2 - u) u ~ 9l  (5.22) 

For domain ~2 we have to work a little harder. First we apply the rotation 
symmetry (4.7) to both functions w in (4.8). Then we use the periodicity 
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property (4.11a) to replace the argument 4 +  u of the second function by 
2 -  x + u. Finally we replace u throughout by 2 -  u. The result is a second 
inversion relation for w, which implies that 

z(u) z(t2 - u) = (24 - u)(u)(3Z - u)(2 + u)/[(2)2(22) 2 ] (5.23) 

t being given by (5.8). (This relation is actually true for both ~1 and N2.) 
As in deriving (5.12), the quasi-periodicity relations (4.11), together 

with (5.10), can be used to relate w for two values of u differing by 2ires. 
(Hence if one lies in @1, or @2, then so does the other.) It follows that 

z(u) = p4e4i(2"- X)z(u + 2izcs) (5.24) 

If one assumes (as seems likely) that ln(z(u) is analytic inside the 
appropriate domain (~1 or N2) and on its boundaries, then it is determined 
by (5.21), (5.23), and (5.24). We do not pursue this calculation further in 
this section: it is discussed in greater generality in Section 6. 

6. C O N J E C T U R E D  G E N E R A L I Z A T I O N  TO A R B I T R A R Y  n 

In Section 5 we have considered the n = 3 case when w is given by 
(4.1). We can also consider the n = 2  case (hard hexagons), when w is 
given by (3.3). Very little changes: the properties in (3.2), (3.5)-(3.13) are 
almost the same as the corresponding n =  3 properties (4.3), (4.7)-(4.12). 
The only differences are that 2 = re/5 instead of rt/7; a, b, c, d can no 
longer have value 2, so the y arguments of w disappear; the factor 
( 2 2 + u ) ( 2 2 - u ) / ( 2 2 )  ~ in (4.8) no longer occurs; the scalar factors multi- 
plying w in the (4.11) are the squares of those in (3.12). 

As a result, the equations of Sections 5 are hardly altered for the n = 2 
case. The y arguments, and references to r2, disappear. In particular, (5.1), 
(5.2), (5.6), (5.8), (5.9), (5.10), (5.12), (5.15), and (5.17)-(5.20) are 
unchanged. 

Some numerical factors change in (5.16) (mainly because of the change 
in value of ~z/Z): 2u(Z - u), 3, 2u + 52, and 14 become, respectively, u(2 - u), 
2, u +  1�89 and 10. The inversion relations (5.21), (5.23) are corollaries of 
(4.8), so the factors (22 + u ) (22 -  u)/(2Z) 2, (32 - u)(2 + u)/(2Z) 2 disappear. 
The expressions p4, 4 i (2u-Z)  in (5.24) are replaced by pZ sign (p), 
2i(2u - 2). 

We have not solved the star-triangle relation (2.4) for arbitrary values 
of n in (2.9), but the solved n = 2  and n = 3  cases do suggest a 
generalization to arbitrary n. Most of the patterns are fairly obvious, so 
this extrapolation may not be so dangerous as it appears. At the very least, 
it provides a convenient way of combining the n = 2 and n = 3 cases. 
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For arbitrary n(~>2), we expect each value of w (considered as a 
function of u) to be a sum of products of n - 1  functions 0 1 ( u - k 2 ) ,  where 
k is an integer and 

2 = ~/(2n + 1) (6.1) 

Note at once that this is different from the eight-vertex solid-on-solid 
generalization of the hard hexagon model, (7) where the Boltzmann weights 
contain only a single function O~(u-  k2). 

The parameters Xo, Yo are defined by (4.2) or (3.7), and occur in the 
definition (5.7) of ra. We generalize this to 

ra = {01 [(n - a) 2]/01(n2)} i/2 (6.2) 

As well as depending on u (and the spins a, b, c, d), we expect w to 
depend on ~b---{~bo, ~bl,..., ~b,_l}, where q~o = 1. Thus we can write it as 
w(a, b, c, dlu,  qS) or simply w[u, ~b]. Write {1,..., 1} simply as 1, and define 

O'a = ra/~a (6.3) 

~ = -~bae ~,(a + 1)i~/2 (6.4) 

Then (4.7), (4.9), (4.11), and (4.12) generalize to 

w(a, b, c, dl u, r = w(b, c, d, a l2 - u, (b') (6.5) 

w(a, b, c, dl O, (~) = ObOj6(a, c)/[r (6.6) 

w[u, ~b] = ( -  1) ~ I w[u + re, ~b] (6.7a) 

=p( ' - l ) /2e i (~- l ) (2u-~)w[u+z~,  ~] (6.7b) 

w(a, b, c, dru, 6 ) = 6 b 6 a w ( a ,  b, c, dlu,  1)/[6a~bc] (6.8) 

We expect h(d, b), H(d, a, b) to be given by (5.15) and (5.16) for all n, 
and p and ga to be given by 

p > O  p = e  (~-~)"(;-~)/~ 
(6.9a) 

g(a) = a(a + 1)/(4n + 2) 

p < 0 p = e - ( n -  l)u(2u+2n- l)/2Jzs 

(6.9b) 
g(a) = a(a + 1)/(4n + 2) 

Then ~ ,  M must again be given by (5.19) and (5.20). If we define 

q = e,;./~ = e~tt /E(2n + 1)s3 (6.10) 

822/44/1-2-18 
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then it follows that the unnormalized probability F(Ol )  , defined by (2.6), is 

F(ffl)=Ol[(n-ffl)~]qg(~l)Xm(ffl,ffm+l,ffm+2;q) (6.11) 
01(n2) 

where the function Xm(a, b, c; q) is defined by 

Xm(~l, O,,+1, ~r~+2, q ) =  ~ q2Jm%~j+l.Oj+2) (6.12) 
~72,...,ffm 

the inner summation being from j = 1 to j = m, the outer being over all 
values of o2,..., o,~ satisfying (1.3), i.e. 

O ~ o j + o j + l ~ n - 1  l ~ j ~ m  (6.13) 

As in the hard hexagon (11 and eight-vertex SOS (7/ models, the boundary 
spins o-,~ +1, ~,~ + 2 should be fixed at their ground-state values. 

The parameter t is positive or negative depending on whether u lies in 
N1 or N2 (the domains defined in (5.2)). The definition of H(a, b, c) 
depends on whether the nome p is positive or negative. Thus there are four 
regimes to consider 

I p < 0  u e ~  2 t =  - ( 2 n -  1) 

II p > 0  u~@ z t =  - ( 2 n -  1) 

III p > 0 u ~ N1 t = 2 

IV p < 0  u e @  1 t = 2  

In all regimes, we see ~om (5.10) that 

IPl =e-2~s 

(6.14) 

(6.15) 

To recapitulate: n, p, u are parameters that are at our disposal; n being 
a positive integer; p being real and in the interval ( -  1, 1); and u being real 
or complex, lying in one of the domains @1 and N2 defined by (5.2). Then s 
is given by (6.15), t by (6.t4), and q by (6.10); the functions 01(u) and g(a) 
are given by (3.1) and (6.9); h(j) and H(d, a, b) are defined by (5.15) and 
(5.16). 

Note that u enters the calculation of F(al)  only via the value of t. This 
is a reflection of the fact that the row-to-row transfer matrices of the model 
(for different values of u) commute: the eigenvectors therefore are indepen- 
dent of u. Since Pr depends only on the eigenvector corresponding to the 
eigenvalue of largest modulus (Section 7.10 of Ref. 3), Pr is independent of 
u except when the moduli of the two largest eigenvalues cross (as happens 
when going from domain @1 to N2). 
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We have assumed that the lattice is infinitely large, which implies that 
m-+ oo. The limiting behavior of Xm(a,b, c;q) depends critically on 
whether [q{ < 1 (as in regimes I and II), or tq[ > 1 (III and IV). In fact the 
model is critical (in the statistical mechanical sense) when q = 1, i.e., when 
p--0 ,  and we can regard p as a temperature-like "deviation from 
criticality" variable. 

Regime I: Gordon's  Identit ies  

In regime I, 0 < q < 1 and H(d, a, b) = a. Thus from (6.12) 

X ' m ( f f t ,  O 'm+l ,  G m + 2 ; q )  = 2 q~r2 + 2a3 + 3~4§ "" + . . . .  1 (6.16) 
G2,...,~m 

This expression tends to a limit as m ~ oo and becomes precisely the 
expression that occurs in the algebraic formulation of Gordon's 
generalization (4'5) of the Rogers-Ramanujan identities. Thus we have 
indeed found (at least for n = 3) a generalization of the hard hexagon 
model that corresponds to Gordon's theorem (1.1). 

We can use (1.1) to express X~o in terms of elliptic 0 functions. When 
we substitute the result into (6.11) and (2.7), we find that Pa can be further 
simplified by using P-function identities (basically eq. (3.2.25) of Ref. 7). 
We intend to discuss this working, together with that for regimes II, III, 
and IV, in a subsequent paper. Here we merely quote the final result. 
Define functions E(z, x) and 03(u, y), for [xl < 1 and 0 < y < 1, by 

E(z, x ) =  f i  (1 - x J-  lz)(1 - xJz-1)(1 - x  j) (6.17) 
j = l  

03(u, Y)= l~ ( l+2y(Zj-1)/Zc~ (6.18) 
j = l  

(taking the positive square root of y), and set 

X = ql/(2n 1) (6.19) 

P l  = _ ( _ _ p ) l / ( 2 n - l )  P 2  = ( _ _ p ) 2 n + l  ( 6 . 2 0 )  

(Thus p and Pl are negative and P2 and x are positive.) Then, for 1 ~< a ~< n 

x (n  - a)2/2E(xa ' __ x(2n + 1)/2) E(qa, q2n + 1 ) 

P"-" = E ( - x  1/2, x) E(x (2"-1)/2, x 4"-2) (6.21) 

201(a2, p) O~(a2, p~) 
- (2n + 1)03(0, p2) 0,(~/2, p2n+ ,) (6.22) 
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(In fact these are precisely the corresponding results for the eight-vertex 
solid-on-solid model: eqs. (3.3.1a) and (3.3.18a) of Ref. 7, with P~ replaced 
b y P ,  ~ a n d r = 2 n + l . )  

Near criticality, p is small and (6.22) gives 

P , _ ~ = [ 4 / ( 2 n + l ) ] s i n Z a 2 { 1 - p Z ( l + 2 c o s 2 a 2 ) +  " . }  (6.23) 

As in Ref. 7, we can define a critical exponent ~ so that the leading singular 
correction to P ,_~  (considered as a function of p) is proportional to 
Ip[ 1-=. Then from (6.23) it follows that 

1 -- ~ = 2/(2n - 1 ) (6.24) 

Partition Function Per Site 

Let us define a function/?(u) by 

'~'  ol(j,~ + u) ol(j,~- u) 
~ ( u )  = (6.25) 

Then for arbitrary n we expect the RHS of the inversion relations (3.6) and 
(4.8) to generalize to 6(a, c)[3(u). This implies that (5.21) and (5.23) 
generalize to 

z(u) z(-u)  = ~ ( u )  
(6.26) 

z(u)  z(t2 - u) = ]~(2 - u) 

while the quasi-periodicity relation (5.24) becomes 

z(u)  = [sign(p)]  n- t p2n-2e2i(,- ~)(2u-)_)z(u + 2ires) (6.27) 

We restrict u to lie in either @1 or ~2. If In z(u)  is analytic in the chosen 
domain, and on its boundaries, then it follows from (6.27) that 

In z(u)  = (n - 1 ) u(2 - u) t- ~. cje j"/" (6.28) 
7~S 

J 

where if p is negative and n is even, the sum is over all half-an-odd-integer 
values of j; otherwise it is over integer values. 

We can calculate the coefficients cj by taking logarithms of (6.26) and 
using the formulas 

In 01(u, e -2~,) = 1 (2u - re) 2 
- ~ In s 4rcs 

- ~ [e -2j"/s + e 2J(" ~)/s]/j(1 - e 2j=/,) 
j = l  

(6.29a) 
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' 1 1 ( 4 u  - g ) 2  
ln01(u, e 2~s )_8__2  n 2s 

16~s 

- ~ {e-j,/2, + ( _ ) j  e j(2, ~)2s}/{j[1 _ ( _ ) j  e j=/zs] } 

j = 1 (6.29b) 

which are valid for 0 < Re(u) < ~ and 0 < Re(u) < ~/2, respectively. We 
can always map the argument u into these domains by using 
Ol(b/) = 01(/'C - -  U) ~--- - - 0 1 ( - -  U). 

The simplest case is regime III, when we obtain 

01(n2) l~l 01(2j2-- u) (6.30) 

(for n odd, the j =  (n+  1)/2 term cancels with the factor before the 
product). 

7. S U M M A R Y  

The main results of this paper are the expressions for the local 
probability Pr that a given site (deep inside the lattice) contains r particles. 
They are given by (2.7) and (6.11)-(6.15), together with the 
definition (5.15)-(5.16) of H(d, a, b). 

The next step is to reduce the RHS of (6.12) to a more tractable form, 
perhaps to a sum of products (and ratios) of elliptic 0 functions. In 
regime I this can be done by using Gordon's generalization of the 
Rogers-Ramanujan identities. The three other regimes lead to other 
mathematically interesting identities, which we intend to give in a sub- 
sequent paper. They are quite different from those we found for the eight- 
vertex SOS model. 

We should stress that we have only obtained a three-state (0, 1, or 2 
particles per site) extension of the hard hexagon model. Thus we only 
know that (6.11)-(6.15) are true for n = 3 and n = 2. The generalization to 
higher values of n is a conjecture. However, in the hard hexagon and eight- 
vertex SOS models ~1'7'15~ we know that all sorts of mathematical identities 
conspire to simplify the final results. If this happens with (6.11)-(6.15), it 
would be remarkable if there were not a corresponding n-state integrable 
model. 

Note 

Since writing this paper, the authors have received preprints from 
Kuniba, Akutsu, and Wadati ~16) giving the same solution of the star- 
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triangle relation, though without a proof, and without the local density 
results for regimes II and III. They also have obtained the n = 4 and 5 
solutions, which we have used to test our conjectures and to obtain the 
form in (5.16a) of H(d, a, b). 

APPENDIX A 

Here we lightly sketch how we obtained the solution (4.1) of the star- 
triangle relation (2.4). 

There are 15 distinct values of w(a, b, c, d), namely those listed in 
(4.1). Write them sequentially as col,..., co15 so, for example, 034= w(0111). 
Then four of the 59 equations (2.4) are 

t t t  / v/ ! tt 
034039039 = 033031 031 + 035038038 

! t !  t t t  

033031036 1 031037039 = ~- 035038 o3't 
(A1) 

! /v r tt  / t !  
032037037 = "Jff 033036036 0350310)1 

t t /  / t /  ! t /  
q- 031 0350)8 f,06 033 03 1 (2)903103 7 

For each equation, another can be obtained by interchanging 03e with 
03'i, for i = 1,..., 15. Thus each becomes a pair of equations, and the first 

. . . . . . . .  Their two-yield four homogeneous linear equations for 031, 036, 038, 039. 
determinant must therefore vanish, giving 

. . . . .  2 ' ' - - 0 3 3 0 3 7 0 3 1  tz (A2) 035039034038 - -  034038035039 - -  0310330)7 

Similarly, the last two equations in (A1) give 

. . . .  2 , , 03 5 03 9 03 ,j 2 (A3) 033037032036 --(02036033037 = 031035039 - -  

Now regard 03'1 ..... 03'15 as constants and 031 ..... 0315 as variables. Then it 
follows from (A2) that 035039, 034038, 032, and (,0360 7 are linearly dependent, 
while from (A3) so are 033037, 0920)6, 032, and 035039. This will be so if there 
exist constants cl,..., c6 such that 

032 ~ C1 035039 -~ C2(J)3(D7 

032036 = C3035039 "~ C4C03(D7 (A4) 

034038 ~-" C5035039 "~ C6033037 

We require 03'i to be a special case of 03~, so that (A4) is true if each 03i is 
replaced by 03';. Substituting back into (A2) and (A3) gives 

C3 = C2 C6 = Cl (A5) 
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One can obtain an equation similar to (A2) from the first and last 
equations in (A1). Using (A4), we find that 

CI (DI (-O6 - -  C2(D1 0)4 = C70)3 0)9 (A6) 

where c 7 is a constant. Similarly, the middle two equations in (A1) give 

C1 (D1 (D 2 - -  C2(DI(D 8 .~- C8 (D5 (D 7 (A7) 

Now we can eliminate 092,093, (-D4, (J) 5 between the five equations (A4), 
(A6), (A7) to obtain a biquadratic relation between the variables 
098(/)9/(/)1(7.0 7 and (D6(D7/O)I(D 9. This can naturally be parametrized in terms 
of elliptic functions (section 15.10 of Ref. 3). This quickly leads to a 
parametrization of 0)1,..., 0)9- Other equations of the set (2.4) can then be 
used to obtain 0)1o ..... 0)15, yielding finally the parametrization (4.1). 
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